Looking at pathogenesis in AFM: the
virus and the cells
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Why are cellular membranes interesting
for pathogenesis and host dissemination
of a non-enveloped virus?
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Picornaviruses have remarkably conserved
genome organization

PL 3A 3C" 3D

3A| 3¢ 3D

v\ , '
- 3a |f3c"°i 3D JVP1 2B 2C 3A 3C" 3D —p Vi
3B o 3B1-3B3

c Zﬁrl» 204 _3A||3‘c?~"’-| 3D I Emgcm 3D

.g' ® > 3CD 3CD VP3VP1 3A 3C™° 3D >Mature
S - 2R ¥y I | products
% 3A“3cm‘ 3D 2B 2C 3A 3¢ 3D

o 3B 3B

2A 28 2¢ 3A3C° 3D

3B
<——Primary polyprotein cleavages—> <—Secondary polyprotein cleavages—> <+—Secondary processing intermediates>



https://doi.org/10.3390/v8030082

Picornaviruses are traditionally classified as non-
enveloped viruses with similar capsid structures
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Double-membraned vesicles have long been known to proliferate
in picornavirus-infected cells but it was never clear why.
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Autophagosomes are also observed during infection with
EVD-68
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Vesicle-based release has been proposed for picornaviruses
for many years

Fig. 102 C. Accumulation of progeny virions within cisternae of endoplasmic reticulum and re
of virions from cisternae by fusion with the plasma membrane

Electron micrographs (1) and (2) show progeny polio-virions within cisternae of endoplasmic
lum at various depths in the cytoplasm of infected HelLa cells, 8 h.p.i. (1) and of infected h
chorion cells, 20 h.p.i. (2). Electron micrographs (3—5) illustrate the release of progeny virions
cisternae (¢) by fusion with the plasma membrane (pm) in pohovnrus infected human chorion
20 h.p.i. (3) and infected HeLa cells, 8 h.p.i. (4) and 12 h.p.i. (5). — Figures from Dunnebacke &

1969 [J. Virol. 4, 511, 512 (1969)]

But the topology of double-membraned vesicles
didn’t make sense for release of naked virions
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eHAV and the discovery of enveloped forms of
picornaviruses
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The enveloped form of coxsackievirus is

derived from the autophagy pathway
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What is autophagy?

e “Self Eating,” cells literally digest themselves a5 s
Identification & Coliection of Aulophagosome
Celluiar Components — Fusion of
) for Degredation V £ Autophagosome
e Important part of cellular homeostasis, (/03 5\ il
Isclation .'}:"/;".. ot I\Iv od® "v"tl /'
organelle turnover. FomaRon es) oo/
e Critical in development, esp. transition from Autophagy
womb to postnatal feeding in mammals.
| | Fomotion of Aylclvicsome &
e Stress response, especially to starvation.

e Diseases: Neurodegenerative (Huntingtons)
Digestive (Crohn’s)
Cancer
Anti- and pro- microbial




Membranes of the autophagic pathway
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Does this represent an anti-viral response to degrade virions?




Autophagy promotes replication of EV-D68

D  cell-Associated EV-D68 E Extracellular EV-D68 F
7.00x107 1.80x108 Control Starve
1.60x108 *ok 72kD =
6.00x107 *
>00410 1.20x10° SQSTM1/
Wi
a Q. 5}
3.00x107 8.00x10
* ; — — ACTB
2.00x107 il
4.00x105
7
1.00x10 2.00x10°
0.00x107 0.00x105
Control Starved Control Starved




s infection activating autophagic degradation?

p62
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Is autolysosome activity required
for infectious virus replication?

Is an anti-viral factor being degraded?

If virus is inside autophagosomes, then

how does the virus survive the autolysosome? Lysosome fusion

Autolysosome




Autophagosome-lysosome fusion is regulated by

SNARE proteins
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o Autophagosomal SNARE

° May also play role in
ER to Golgi transport

Vamp8
o Lysosomal SNARE

Snap29

> Regulator of autophagosome

and lysosome membrane fusion
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Snap?29 is cleaved by the EV-D68 3C protease
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Separating the two halves of SNAP29 inhibits
progression of the pathway
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Why is the virus activating the autophagic pathway?
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Why is the virus activating the autophagic pathway?

Bafilomycin A1
OO LC3 I NH4CI
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Infectious virus production is reduced following
inhibition of vesicle acidification
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Which step in virus production is

. . promoted by vesicle acidification?
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Which step in virus production is promoted by vesicle acidification?

PV
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NH,Cl treatment does not have a major effect on overall levels of
empty and non-infectious PV capsids
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Sucrose gradients can be used to separate empty and genome-
containing capsids

Empty Capsid Genomic RNA Provirion Infectious Virion
VP2 / VP4
VPO Cleavage
“Maturation”

Capsid Sedimentation

Proteins Velocity Genome
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NH,Cl treatment inhibits the VPO maturation cleavage
required to generate infectious virus.
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Acidic vesicles promote capsid maturation, the very last step in
generating infectious poliovirus.






Summary

e Picornaviruses, including EV-D68, can be released in membranous
vesicles.

 These vesicles are believed to be for cell-to-cell transmission within a
host.

 They often have multiple virions and display phosphotidylserine.

 For many enteroviruses these membranes are derived from the
autophagy pathway.

 The viruses appear to rewire the autophagy pathway to promote non-
canonical secretion of virus-filled vesicles.
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Enterovirus D68 and neurotropism
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