Astrocytes, Neurons, and Enteroviruses

Amy Rosenfeld, PhD Assistant Professor Department of Microbiology and Immunology Columbia University, Vagelos College of Physicians and Surgeons 19 June 2020 abr22@cumc.columbia.edu

- First identified in California during the 1960s
- Infection results in "common cold-like" symptoms
- Outbreaks in the United States occurred during summers of 2014, 2016 and 2018
- Associated with "a polio-like" flaccid myelitis-626 CDC confirmed cases

Enterovirus D68 (EV-D68)

D68 circulation¹²⁻¹⁴

Month, year

Virus 🛨

EV-D68 pathogenesis

- Virus infection initiates in nasopharyngeal cavity
- Infection results in respiratory disease
- No respiratory epithelium damage
- instability
- Virus in CSF in 4/626 cases
- Immunoreactivity to EV-D68 VP1 peptides in CSF of 43% and sera of 73% AFM patients (Mishra et al., mBio. 2019)
- Motor cortex lesions similar to those of poliovirus

No virus isolated from blood or stool of patients, pH

Brain/meninges

Neurotropism, neurovirulence and neuroinvasion

- infection of cells within the central nervous system
- central nervous system
- periphery

• **Neurotropism**- the production of infectious progeny resulting from

• Neurovirulence- disease that results from infection of cells within the

• Neuroinvasion - entry into the central nervous system from the

EV-D68 isolates

- Fermon (California, 1962)
- Rhyne (California, 1962)
- New York (NYC, 2009)
- 947 (MO, 2014)
- 949 (MO, 2014)

- 952 (IL, 2014)
- 953 (KY, 2014)
- 956 (IL, 2014)
- 23087 (US, 201
- 23088 (US, 201
- 23089 (US, 201

0 * *

0.0

Is EV-D68 neurotropic?

EV-D68 replication in iCell human Neurons

GFAP positive human astrocytes

EV-D68 replication in human iAstrocytes

Hours Post Infection

EV D-68 replication in mouse postnatal brain slices

DAPI

Anti-enterovirus

Nissl

EV-D68 replication in isolated glial fibrillary acidic protein (GFAP) positive mouse astrocytes

from P1-P3 mice

		4 0 9	NY 6
Does type I	/ml	10 ⁸	
Interferon repress		10 ⁷	
EV-D68		10° 10 ⁵	
reproduction in	PFU	10 ⁴	
· Sk-N-Sh cell	1 1 1	10 ³ 10 ²	
culture?		10 ¹	
		10 ⁰	

4 week old C57BL/6 mice lacking the IFN α/β receptor develop paralysis after EV-D68 intracranial inoculation

EV-D68 replication is enhanced in astrocytes isolated from IFNAR-/mice C57/B6

Type I IFN modulates EV-D68 neurotropism

IFNAR^{-/-} mice are not sufficient to study to EV-D68 associated pathologies

	1×10 ⁸ _	
Reproduction	1×10 ⁷ -	
of F\/_D68	1×10 ⁶ -	
	1×10⁵- Ε	
isolates in	1×10⁴-	
astrocytes	1×10 ³ -	
purified from	1×10 ² -	
· outhrod mico	1×10'-	
	1×10°−	

Hours Post Infection

10⁷ 10⁶-**10**⁵- 10^{4} Not all genetic backgrounds are 10² 10¹ equal **10**⁰-

10⁻¹

EV-D68 and poliovirus are not the same

Hours Post Infection

Enterovirus A71,	1×10 ⁶
enterovirus-D68	1×10 ⁵ -
and	1×10 ⁴ -
	E 1×10 ³
Coxsackievirus	<mark>ዜ</mark> 1×10²−
A16 need	1×10 ¹ -
different genetic	1×10 ⁰ -
	1×10 ⁻¹ ┘
background tor	2468
reproduction	、 イ

Hours Post Infection

Summary

- specific
- those necessary for poliovirus, enterovirus A71 and **Coxsackievirus** 16

• EV-D68 infection is sensitive to the presence of type I Interferon • Genetic requirements for neurotropism of EV-D68 are isolate

• Genetic requirements for neurotropism of EV-D68 differ from

Many pathways leads to neurotropism, a wrong turn for a respiratory virus

Viral infections of the CNS are less dependent on encounter with a potentially neuropathogenic agent than on some flaw in the usual barriers that normally exclude viruses from invading and infecting susceptible cells of the CNS- Richard T Johnson, 1982

Audrey Warren

Vincent Racaniello

abr22@cumc.columbia.edu

Animal models for studying AFM

Kenneth Tyler, MD.

Louise Baum Endowed Professor and Chair Department of Neurology University of Colorado Anschutz Medical Campus

