

Understanding the genetics of rare neuroimmune disorders

Monique Anderson, MD PhD BWH-MGH MS & Neuroimmunology Fellow Michael Levy lab

Siegel Rare Neuroimmune Association

DISCLOSURES

NO FINANCIAL DISCLOSURES TO DISCLOSE

UNPUBLISHED WORK FUNDED IN PART BY THE PAULINE SIEGEL ECLIPSE RESEARCH FUND

Prevalence Overview of Genetics Genetics of each rare neuroimmune disorder Current Research Ongoing Projects and Conclusion

PREVALENCE OF RARE NEUROIMMUNE DISORDERS

Idiopathic optic neuritis (ION): 4-8 per 100,000 per year

Acute demyelinating encephalomyelitis (ADEM): 1 per 125,000-250,000 per year (0.07-0.09 per 100,000 in children)

MOGAD: prevalence of 1.3-2.5 per 100,00

Acute Flaccid Myelitis (AFM): <1 per million per year

Idiopathic Transverse Myelitis (ITM): up to 7.9 per 100,00

NMOSD: 1-5 per 100,000 (worldwide), 6.88 per 100,000 (US)

UNDERLYING FACTORS OF DISEASE

Genetics

- Types of genetic mutations: Point mutations, insertions, deletions, duplications, translocations, inversions
- Germline vs somatic mutations
- De novo vs inherited
- Can increase or decrease likelihood of developing a disease
- Can impact how well you recover from injury and/or affect disease severity or likelihood of relapse

HISTORY OF GENOME WIDE ASSOCIATION STUDIES IN NEUROLOGY

HUMAN LEUKOCYTE ANTIGEN (HLA)

- Located on chromosome 6
- approximately 165 different proteincoding genes, most of which are immune related
- Class I: HLA-A, HLA-B and HLA-C, along with three nonclassical loci: HLA-G, HLA-E and HLA-F.
- Class II: HLA-DP, HLA-DQ and HLA-DR, along with two non-classical loci, HLA-DO and HLA-DM.

M. K. Misra et al.

Neurological	MHC class II		MHC class I			
diseases	Predisposing	Protective	Predisposing	Protective	References	
Multiple sclerosis	DRB1*15:01, DRB1*15, DRB1*08:01, DRB1*04:05, DRB1*03:01; DRB1*13:03; DRB1*13 ~ DQA1*05:01 ~ DQB1*03:01	DRB1*14:01, DRB1*11, DRB1*13-DQB1*06:03, DQA1*01:01-DRB1*15:01, DQB1*03:01- DQB1*03:02	A*03, *0301; B*07	A*02:01; B*44:02, *44, *38:01, *55:01; C*07, *05	5,29,30, 35–41, 50-55,57–64	
Neuromyelitis optica	DPB1*05:01, DPB1*03:01, DRB1*12, DRB1*16:02, DRB1*03	DRB1*09:01	-	-	66–76	
Parkinson	DRA, DRB5, DRB1, DRB1*04, DRB1*04:03, DRB1*03, DRB1*03:01	DRB1*04:06, DRB1*04:04, DQA1*03:01	B*07:02, *17, *18; C*07:02	C*03:04	4,77,78,84, 86,87,89	
Alzheimer's	DR1, DR2, DR3, DRB1*03, DPB1, DRB5-DRB1, DRA	DR4, DR6	A*02	B*07:02, A*03:01	8,94–101,104	
Schizophrenia	DRB1*01:01, DRB1*03:01:01, DRB1*03:01:02, DQA1	DRB1*03:01, DRB1*04, DRB1*06	B*08:01, C*01:02	A*03, *011, *02; B*27, *51	107,108,111, 114,117,118	
Myasthenia gravis	DQB1*05:02, DRB1*03, DRB1*04, DQB1*02, DQB1*03, DRB1*09, DRB1*15:01, DQB1*05:02, DRB1*16, DQA1*03:02/DQB1*03:03:02	DRB1*08, DRB1*13:01, DQA1*05:01	B*08, C*07:01	_	63,121–125, 130,132, 133,138	
Amyotrophic lateral sclerosis	-	-	A*03, A*02, A*28; B*40, B*35, C*04	A*09, HLA-F	7,140–142, 145,146	

Table 1. Summary of HLA class I and II associated susceptible or protective alleles in neurological diseases

Optic neuritis

Anatomy of the eye

Genetics of ION

- Momkute et al showed an increased risk of ON with APOε₄ in males
- Increased APOE levels found in ON compared to controls
- Genotypes T/C and C/C of vascular endothelial growth factor A (VEGFA) rs1413711 were increased in ON subjects compared to controls (Punye et al)
- Another VEGFA, allele C of VEGFA rs833068 was associated with a 1.7 fold increased risk of ON

ADDITIONAL GENES ASSOCIATED WITH ON RISK

IL-6

IL-1

RAGE

Matrix metalloproteinase (MMP)

HLA-DR2 (assoc w/ MS) Cholesterol ester transfer protein (CETP)

ADDITIONAL GENES ASSOCIATED WITH ON RISK

ADDITIONALLY, HABEK ET AL PERFORMED GWAS ON PATIENTS WITH ON, RULING OUT SECONDARY CAUSES, AND FOUND DIFFERENTIAL EXPRESSION OF OVER 722 GENES COMPARED TO CONTROLS. THE PROTEINS THAT APPEARED TO BE OF GREATEST SIGNIFICANCE WERE:

- SLP1 (AKA VPS33, sorts proteins from golgi to vacuole)
- CR3 (complement receptor 3)
- ITGA4 (integrin subunit alpha 4)

ACUTE DEMYELINATING ENCEPHALOMYELITIS (ADEM)

- Alvez-Leon et al found HLA DQB1*0602, DRB1*1501 and DRB1*1503 alleles to be slightly associated (<0.05) in monophasic ADEM.
- Cui et al demonstrated increased variations in NAC, GOLGA5 and CTLA4 in pediatric patients with MOG+ ADEM

Gene	SNP	ADEM group	Aa+aa*	AA*	Р	OR [95%CI]	Padj
ΝΑCα	rs11171951 (c.1864+684 G>A)	MOG-IgG+	28	2	<0.001 [†]	15.39[3.06-77.39]	< 0.001 [†]
		MOG-IgG-	8	19			
GOLGA5	rs1040835 (c.1048 T>C)	MOG-IgG+	27	2	0.027 [†]	3.84[1.13-13.09]	0.81
		MOG-IgG-	26	1			
CTLA4	rs231775 (c.49 A>G)	MOG-IgG+	23	6	0.019 [†]	4.11[2.22-13.62]	0.76
		MOG-IgG-	22	5		- •	

Significant Association Between Candidate SNPs and MOG-IgG+ ADEM

Cui et al. Pediatric Neurology 2024

TABLE 3.

Table 2. The allelic association of DRB1*1501, DRB1*1503, DQA1*0201, DQB1*0602 and DPA1*0301 among 11 ADEM patients and 84 healthy matched controls.

	Patients N=11 (%)	Controls N=84 (%)	Р	Рс	OR
DQB1*0602	10 (90.9)	30 (35.7)	0.0004	0.0001	18.00
DQA1*0102	4 (36.3)	24 (28.5)	0.59	0.85	1.43
DRB1*1501	4 (36.3)	10 (13.0)	0.04	0.12	3.79
DRB1*1503	5 (45.4)	9 (10.7)	0.004	0.01	6.17
DPA1*0301	6 (54.5)	30 (35.7)	0.22	0.37	2.16

ACUTE FLACCID MYELITIS

No genetic susceptibility noted to date

Myelin Oligodendrocyte Glycoprotein Antibody Disease (MOGAD)

Sun et al. J Neurol Neurosurg Psychiatry. 2020 May

- Sun et al found that DQB1*05:02 and DRB1*16:02 alleles were associated with pediatric onset
- Also associated with more severe disease
- There were no risk alleles associated with adult onset in their cohort

HLA-DQA1*01 : 01

MOG segment

GENETICS OF MOGAD

- IN A SEPARATE STUDY (ALSO OUT OF CHINA), SHU ET AL FOUND INCREASED PREVALENCE OF RNASET2 (RECRUITS MACROPHAGES), BANK1 (ASSOCIATED WITH SYSTEMIC SCLEROSIS) AND TNIP1 (REGULATIONS NFK-B) WHEN INVESTIGATING 28 IMMUNE RELATED GENES IN PATIENTS WITH MS, MOGAD OR NMO
- ADDITIONAL STUDIES IN THE NETHERLANDS AND UK FOUND NO HLA ASSOCIATION

Neuromyelitis Optica Spectrum Disorder (NMOSD)

Neuromyelitis Optica Neuromyelitis optica spectrum disorder

- Unlike MOGAD, there are familial and sporadic forms
 - HLA-DRB1*04:05 and *16:02.
- HLA-DRB1*03 associated with NMO in Afro-Caribbeans. This is the most appreciated risk focus.
- HLADRB1*08:02 and HLA-DRB1*16:02 have been found as risk loci, while HLA-DRB1*09:01 has been a protective allele

NMOSD WHOLE EXOME SEQUENCING

- Whole exome sequencing has also detected:
 - AQP4,
 - CYP27B1 (Vitamin D activator)
 - CYP7A1 (Thyroid Hormone receptor)
 - CD226 (costimulatory molecule for NK and T cells)
 - CD58 (costimulatory molecule for NK and T cells)
 - CD6 (T cell activation)
 - FCRL3(interacts with HLADRB1*0103)
 - GPC5 (inhibits tumor growth)
 - MIF (macrophage migration inhibitory factor)
 - ATG5 (core autophagy protein)
 - PD-1.3 (programmed cell death)
 - IL2RA (expressed on activated T cells and Tregs)
 - IL7RA
 - IL17A

HLA regions	Number of samples	Population	Source of sample/ assay methods	Associations	Year	Ref
HLA-A, B, C HLA-DRB1, DQB1, DPB1	15 NMO patients and 606 healthy controls	Southern Brazilian	Peripheral blood/ Sanger sequencing	There was significant association between HLA-DRB1*16:02, *04:05, C*15:02 alleles and NMO susceptibility.	2019	(22)
HLA-DRB1, DQB1	42 NMO patients and 150 healthy controls	French Afro- Caribbean	Peripheral blood/ PCR-SSO	There was significant association between HLA-DRB1*03 alleles and NMO disease.	2010	(23)
HLA-DRB1, 3, 4 and 5	27 NMOSD patients and 28 healthy controls	Mulatto Brazilian (Ribeira [°] o Preto)	Peripheral blood/ PCR-SSP	HLA-DRB1*03 and DRB1*10 alleles were overrepresented in NMOSD patients compared to controls.	2009	(24)
HLA-DRB1	35 NMO patients and 99 healthy controls	Brazilian (Mexico City)	Peripheral blood/ PCR-SSP	HLA-DRB1*03 and DRB1*10 alleles were more common in NMO cases compared to controls.	2016	(25)
HLA-DRB1, DQA1 and DQB1	65 NMO patients and 100 healthy controls	Brazilian (Rio de Janeiro)	Peripheral blood/ PCR-SSO and SSP	HLA-DRB1*01:02, 03:01, DQB1*02:01 and DQA1*01:05 alleles were more common in NMO cases compared to controls. DRB1*03:01- DQA1*05:01/3/5-DQB1*02:01, DRB1*01:02- DQA1*01:01-DQB1*05:01 and DRB1*10:01-DQA1*01:04/5- DQB1*05:01 haplotypes were associated with NMO.	2017	(26)
HLA-A, B, C, DRB1 and DQB1	71 NMO patients and 97 healthy controls	Mexican	Peripheral blood/ SBT	Risk HLA alleles for NMO: DQB1*03:01, DRB1*08:02, DRB1*16:02, DRB1*14:06, DQB1*04:02, B*35:14, B*39:06 and protective alleles include: DQB1*03:02, DQB1*02:02, DRB1*04:07, DRB1*07:01 and B*39:05	2020	(28)
HLA-A, B, DQA1, DQB1, DRB1, and DPB1	39 NMO, 6 patients at risk of NMO, and 100 healthy controls	French Caucasian	Peripheral blood/ PCR-RFLP and PCR-SSP	HLA-DQA1*102, * 501, DQB1*0201 DRB1*03 alleles were significantly associated with NMO. There was no correlation between distribution of HLA alleles and IgG antibody subgroups	2009	(29)
HLA-DRB1	22 NMO patients and 225 healthy controls	Spanish Caucasian	Peripheral blood	HLA-DRB1*10 allele was significantly associated with NMO disease.	2011	(30)
HLA-A, B, C, DRA, DRB1, DQA1, DQB1, DPA1, DPB1, E, F, G, DOA, DOB, DMA, and DMB	31 NMOSD patients and 429 healthy controls	Japanese	Peripheral blood/ NGS-based HLA genotyping	HLA-DQA1*05:03 allele had the most association with NMOSD.	2019	(31)
HLA-DRB1 and DPB1	77 NMO, 39 NMOSD patients and 367 healthy controls	Japanese	Peripheral blood/ PCR-SSO	Higher occurrence of HLA-DRB1*1602, DPB1*0501 and lower occurrence of DRB1*0901 alleles were associated with anti-AQP4 antibody positive patients.	2012	(32)
HLA-DRB1 and DPB1	165 NMOSD patients	Japanese	Peripheral blood/ SSO (Luminex)	HLA-DRB1*08:02 and DPB1*05:01 alleles were associated with disease and DRB1*09:01 was protective allele in	2021	(33)
Ghafouri-Fard	et al. Frontiers	in Imm	unology Oc	t 2021.		

NMO GENETICS

More recently Saggau et al identified enrichment of T cells with HLA-DQ6.2 (DQA1*01:02, DQB1*06:02) reactive to AQP-4 in NMOSD patients

Genes	Number and type of samples	Population	Source of samples/ assay method	Associations	Ref
CYP27B1: rs12368653 rs10876994 rs118204009 rs703842 CYP24A1: rs2248359	110 NMO patients and 294 healthy controls	Han Chinese	Peripheral blood/ MassARRAY system and sanger sequencing	rs703842 and rs10876994 were significantly associated with NMO compared to controls.	(55)
11 SNPs in CYP7A1	90 NMO patients and 240 controls	Korean	Peripheral blood/ Bead Express	- rs3808607 and rs1457043 were associated with NMO. -"G/G" genotype of rs3808607 had a higher protective effect on the risk of disease	<mark>(56)</mark>
Promoter region of CYP7A1	89 NMO patients and 325 controls	Han Chinese	Peripheral blood/ sanger sequencing	-204A>C (rs3808607), -469T>C (rs3824260) and -208G>C were significantly associated with NMO.	(57)
CD226: rs763361	89 NMO patients and 129 healthy controls	Southern Han Chinese	Peripheral blood/ sequencing	TT genotype of rs763361/Gly307Ser was associated with NMO susceptibility.	(58)
CD58: rs17426456 rs2300747 rs1335532 rs12044852 rs1016140 rs12005416	98 NMO patients (AQP4-Ab ⁺) and 238 healthy controls	Korean	Peripheral blood/ TaqMan assay	 4 SNPs (rs2300747, rs1335532, rs12044852, and rs1016140) and 2 haplotypes in the CD58 gene were significantly associated with NMO. rs1016140 led to T-cell hyperactivity that caused AQP4-Ab access to CNS. 	(59)
9 SNPs in <i>CD58</i> : rs1335532 rs10802189 rs56302466 rs472291 rs3789716 rs1335531 rs1335532 rs2300747 rs1016140	230 NMOSD patients and 487 healthy controls	Han Chinese	Peripheral blood/ SNPscan Kit and PCR-LDR	 rs2300747, rs1335532, rs56302466, rs1016140, and rs12044852 were associated with NMOSD. TAGCCCAA haplotype increased and TATTACGG haplotype reduced NMOSD risk. 	(60)
21 SNPs in CD6, TNFRSF1A and IRF8	99 NMO patients and 237 healthy controls	Korean	Peripheral blood/ TaqMan assay	rs12288280 in <i>CD6</i> gene and rs767455, rs4149577, rs1800693, and ht2, ht3 haplotypes in <i>TNFRSF1A</i> were significantly associated with NMO.	<mark>(</mark> 61)
6 SNPs in FCRL3	150 NMO patients and 300 healthy controls	Chinese	Peripheral blood/	G allele of -1901A>G and T allele of -658C>T polymorphism were significantly more frequent in patients	(62)
7 SNPs in <i>FCRL3</i> : rs7528684 rs11264799 rs945635 rs3761959 rs2210913 rs2282284 rs2282284	132 NMO patients and 264 healthy controls	Chinese	Peripheral blood/ TaqMan assay and sequencing	Both allelic and homozygote model of s7528684, rs945635, rs3761959, and rs2282284 were significantly associated with NMO susceptibility.	(63)
9 SNPs in GPC5	99 NMO patients and 237 healthy controls	Korean	Peripheral blood/ TaqMan assay	rs1411751, rs9523762 and BL1_ht3 haplotype of GPC5 were significantly associated with NMO.	(64)
<i>MIF-173</i> rs755622	70 NMO patients and 60 healthy controls	Caucasian	Peripheral blood/ PCR-RFLP	CC/GC genotypes in polymorphism were correlated with higher EDSS. These genotypes were more frequent in patients with both optic neuritis and myelitis. <i>MIE</i> -173 in more associated with severity rather than susceptibility.	(65)
5 SNPs in <i>ATG5</i> :	109 NMO patients and 288 healthy controls	Southern Han	Peripheral blood/	CC genotype of rs548234 associated with NMO susceptibility while T allele of rs548234 and A allele of rs6937876 played a protective role in AOP4-	(66)

Ghafouri-Fard et al. Frontiers in Immunology Oct 2021.

IDIOPATHIC TRANSVERSE MYELITIS (ITM)

Felt to be sporadic and not familial

VPS37A-L234I

Familial monophasic acute transverse myelitis due to the pathogenic variant in *VPS37A*

Maureen A. Mealy, RN, Tai-Seung Nam, MD, PhD, Santiago J. Pardo, BA, Carlos A. Pardo, MD, PhD, Nara L. Sobreira, MD, PhD, Dimitrios Avramopoulos, MD, PhD, David Valle, MD, Kathleen H. Burns, MD, PhD, and Michael Levy, MD, PhD Correspondence Dr. Levy: mlevy@jhmi.edu

In pursuit of an etiology, genetic analysis of TM patients was undertaken and a pair of siblings with ITM were found to have a shared unique point mutation in VPS37A

Mealy et al. Neurology 2018

THE ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT (ESCRT)

Williams and Urbe. Nat Rev Mol Cell Bio 2007

BOTH VPS37A MUTATIONS ARE ASSOCIATED WITH INCREASED EXOSOME PRODUCTION/EXPORT

- VPS37A-L234I (TM mutant) and VPS37A-K382N (HSP mutant) were both associated with increased exosome production
- Noted variability in degree of exosome decrease with attempted KD

A, B,D= VPS37A shRNA E=scramble shRNA

CHANGES IN AQP4 CARGO IN ISOLATED EXOSOMES

 Increased AQP4 cargo in exosomes isolated from AQP4-GFP 293T cells transfected with VPS37A TM mutant

relative AQP4 expression to HSP70

ADDITIONAL ESCRT MUTATIONS ASSOCIATED WITH DEMYELINATING DISORDERS

	FSCRT	Chromo		Frequency in		Numb	er of patients with SNP
Gene	pathway	some	rsID	TM / general population	Effect	TM (167 cases)	NMOSD / MS / CTRL (364 / 1718 / 726 cases respectively)
IST1		16	rs773454925	0.60% / 0.017%	Splice donor variant	1 (c.798+1G>C)	0
CHMP1A		16	rs374723745	0.60% / 0.0013%	Stop gain	1 (c.698C>G; p.Ser233*)	0

ADDITIONAL ESCRT MUTATIONS ASSOCIATED WITH DEMYELINATING DISORDERS

		Chro		Frequency			Numbe	or of patients	with SNP	
Gene	ESCRT pathway	mos ome	rsID	in TM / general population	Effect	TM (167 cases)	NMOSD (364 cases)	MS (1718 cases)	CTRL (726 cases)	Demyelinating disease (Total / Frequency)
STAM2	0	2	rs7471 71028	0.60% / 0.026%	Mis- sense	1 (c.259C>T, p.Arg87Cys)	1 (C>A; Arg>Ser)	2 (C>A; Arg>Ser)	0	4 / 0.13%
CHMP4C		8	rs1142 87276	0.60% / 0.026%	Mis- sense	1 (c.455G>A, p.Arg152Gln)	2 (G>A; Arg>Gln)	1 (G>A; Arg>Gln)	0	4 / 0.13%
TSG101	I	11	rs3438 5327	0.60% / 0.56%	Mis- sense	1 (c.501G>A, p.Met167lle)	5 (G>A; Met>lle)	2 (G>A; Met>lle)	0	8 / 0.27%
VPS4A	ATPase complex	16	rs1848 92976	0.60% / 0.039%	Mis- sense	1 (c.1171G>A, p.Asp391Asn)	4 (G>A; Asp>Asn)	4 (G>A; Asp>Asn)	0	9 / 0.30%
IST1		16	rs1395 13735	0.60% / 0.059%	Mis- sense	1 (c.505G>A, p.Ala169Thr; c.22G>A, p.Ala8Thr; c.466G>A, p.Ala156Thr)	1 (G>A; Ala>Thr)	1 (G>A; Ala>Thr)	0	3 / 0.10%

Courtesy Dr. Taka Mikami

WHAT CAN WE DO?

Ongoing Research

Neuroimmunology Clinic and Research Laboratory

Welcome to the Neuroimmunology Clinic & Research Lab at Massachusetts General Hospital. We provide leadingedge patient care, clinical research, education and awareness about rare autoimmune disorders of the central nervous system.

Residuals of TM in MOGAD

ALSO AVAILABLE THROUGH THE MGH NEUROIMMUNOLOGY CLINIC PAGE HTTPS://WWW.MASSGENERAL.ORG/NEUROLOGY/TREATMENTS-AND-SERVICES/NEUROIMMUNOLOGY-CLINIC

Conclusions

- It is very rare to find a gene directly responsible for a single disease.
- Usually genetics can potentially create a background where you are at increased risk for developing a disease
- Often there may be multiple genes and other factors at play
- However, genetics can help guide us in potential therapeutic targets for disease

Acknowledgements

Levy Lab

- Michael Levy
- Taka Mikami
- Phil Bilodeau
- Shuhei Nishiyama
- Natalia Drosu
- Natasha Bobrowski-Khoury
- Anastasia Vishnevetsky
- Melanie Delgado
- Becca Salky
- Gabriela Romanow

Blackstone lab

Craig Blackstone

Hui-Fang Hung

Thank you

Monique Anderson manderson53@mgh.Harvard .edu

Michael Levy mlevy11@mgh.Harvard.edu

REFERENCES

- 1. DEL NEGRO ET AL. UNDERSTANDING THE GENETICS AND PHYSIOLOGY BEHIND OPTIC NEURITIS. GENES (BASEL) 2023 DEC 9.
- 2. HABEK ET AL. GENOME-WIDE EXPRESSION PROFILE OF PEOPLE WITH OPTIC NEURITIS ASSOCIATED WITH MULTIPLE SCLEROSIS. BIOMEDICINE 2023
- CUI ET AL. NOVEL GENETIC VARIANTS DISTINGUISHING MYELIN OLIGODENDROCYTE GLYCOPROTEIN-IGG-POSITIVE FROM MYELIN OLIGODENDROCYTE GLYCOPROTEIN-IGG-NEGATIVE PEDIATRIC ACUTE DISSEMINATED ENCEPHALOMYELITIS IN NORTHERN CHINA. PEDIATRIC NEUROLOGY 2024-07
- 4. ALVEZ-LEON ET AL. ACUTE DISSEMINATED ENCEPHALOMYELITIS: CLINICAL FEATURES, HLA DRB1*1501, HLA DRB1*1503, HLA DQA1*0102, HLA DQB1*0602, AND HLA DPA1*0301 ALLELIC ASSOCIATION STUDY. ARQ NEUROPSIQUIATR 2009;67(3-A):643-651
- 5. SUN ET AL. MYELIN OLIGODENDROCYTE GLYCOPROTEIN-ASSOCIATED DISORDERS ARE ASSOCIATED WITH HLA SUBTYPES IN A CHINESE PAEDIATRIC-ONSET COHORT. J NEUROL NEUROSURG PSYCHIATRY 2020;91:733–739
- 6. SHU ET AL. MYELIN OLIGODENDROCYTE GLYCOPROTEIN-ASSOCIATED DISEASE IS ASSOCIATED WITH BANK1, RNASET2 AND TNIP1 POLYMORPHISMS. JOURNAL OF NEUROIMMUNOLOGY 2022
- 7. ABBATEMARCO ET AL. MODERN LOOK AT TRANSVERSE MYELITIS AND INFLAMMATORY MYELOPATHY. NEUROIMMUNOLOGY AND NEUROINFLAMMATION. AUG 2021
- 8. MURPHY ET AL. ACUTE FLACCID MYELITIS: CAUSE, DIAGNOSIS, AND MANAGEMENT. LANCET 2020 DEC 23;397(10271):334–346
- 9. SAGGAU ET AL. AUTOANTIGEN-SPECIFIC CD4+ T CELLS ACQUIRE AN EXHAUSTED PHENOTYPE AND PERSIST IN HUMAN ANTIGENSPECIFIC AUTOIMMUNE DISEASES. IMMUNITY 57, 2416–2432, OCTOBER 8, 2024
- 10. . GHAFOURI-FARD ET AL. A COMPREHENSIVE REVIEW ON THE ROLE OF GENETIC FACTORS IN NEUROMYELITIS OPTICA SPECTRUM DISORDER. FRONTIERS IN IMMUNOLOGY OCT 2021

REFERENCES

11. MEALY ET AL

GENOME WIDE ASSOCIATION STUDIES (GWAS)

Review Article

Genome-wide association studies in neurology

Meng-Shan Tan¹, Teng Jiang², Lan Tan^{1,2,3}, Jin-Tai Yu^{1,2,3}

These initial studies allowed for the discovery of a role of inflammation in neurodegenerative disorders like Parkinson's disease, Alzheimer's disease and ALS

It also shed light on particular genetic risk factors in MS